Китайская радиоуправляемая машинка. Радиоуправление на микроконтроллере Схема радиоуправления на 2 команды

Раньше даже близко не было такого изобилия товаров вообще и игрушек в частности. И во многом современный детский рай обязан прогрессу в электронике. Говорящие роботы , мультикоптеры, - всё это не просто есть в магазинах, а продаётся по очень недорогой, для многих, цене. К тому же игрушки иногда бывают настолько продвинутые в плане радиоэлектронной начинки и интересные по работе, что тут впору покупать их не для детей, а для себя. Тем более если отец радиолюбитель:) В общем случайно проходя мимо витрины магазина "Всё по доллару" заметил коробку с китайской радиоуправляемой машинкой, которая стоила всего 10$! Естественно это за весь комплект.

Комплектация Р/У машинки

  • Машина - гоночный автомобиль
  • Пульт дистанционного управления
  • Четыре аккумулятора 1,2 В 600 мА/ч
  • Зарядное устройство 4,8 В 250 мА

Характеристики авто на радиоуправлении

  • Питание машинки - 4 шт. 1,2 В никель-кадмиевые аккумуляторы
  • Питание пульта - 3 пальчиковые батарейки АА
  • Время заряда - 5 часов
  • Время работы - пол часа
  • Частота радиоканала - 27 МГц
  • Дальность действия радиоканала - 10 метров

На коробке всё написано по китайски - ни одного не то что русского - даже английского слова. Что ж, время учить китайский или развивать интуицию:) Сложного по идее ничего нет: вставил аккумуляторы в авто, три батарейки в пульт - и поехали.

Пульт управления машинкой

Обратите внимание, в комплект не входят батарейки для ПДУ, только к автомобилю. Так что понадобится 3 элемента АА по 1,5 В.

Пульт сразу привлёк внимание полным отсутствием кнопок, не считая кнопки включения.

Всё дело в том, что здесь команды на поворот влево-вправо, движение вперёд-назад, подаются наклоном. Если открыть пульт ДУ и изучить плату с деталями, то видно 4 датчика положения. Внутри этих цилиндриков, впаянных с наклоном, и находятся датчики в виде шариков.

Сама микросхема передатчик формата DIP, как и остальные детали, поэтому пульт очень компактный и лёгкий. К нему спереди прикручена телескопическая антенна на 3 колена. Длинна в разложенном виде - около 30 см. Если вы стоите рядом с авто - можно и не раскладывать её. Но при дальности свыше 5 м это необходимо.

Радиоуправляемая машина

Прежде чем установить аккумуляторы в батареечный отсек авто, необходимо их зарядить. Для этого в комплекте есть маленькой зарядное устройство, естественно импульсное.

Плата внутри него - копия обычной зарядки от мобильного телефона. И параметры (и схема) аналогичные - импульсный преобразователь на транзисторе примерно 2-3 ватта.

При включении кнопки машинки (она на днище), все 4 колеса сразу начнут мигать синими и красными светодиодами, установленными изнутри. Это и красиво, и удобно - сразу понятно, что питание активировано. Чтоб не было ситуации, при которой поигрались и забыли обесточить авто, посадив или вообще угробив аккумуляторы.

Разберём её тоже и заглянем под крышку. Приёмная часть собрана на базе микросхемы RX-2B . Схемы включения вы можете , они стандартны для большинства радиоуправляемых моделей 27 МГц, малого радиуса действия.

А транзисторы С945 коммутируют два моторчика - основной, что находится в задней части авто, и вспомогательный, ответственный за поворот передних колёс.

Фары спереди засвечиваются когда машина едет вперёд. При заднем ходе они сразу гаснут. Интересно, что тут применили не светодиоды, а лампочки. Это конечно более реалистично, но расход энергии увеличивается почти на 100 мА, поэтому для экономии просто перерезал ножницами провода, идущие к ним от платы управления.

Видеоролик работы машинки

В общем китайцы в очередной раз удивляют не столько технологиями, хотя они держат руку на пульсе и постоянно пополняют рынок новыми интересными девайсами, а возмутительно низкой ценой. Подумайте, сколько бы стоили отдельно 4 аккумулятора? А зарядное устройство? Не говоря про остальное. Что касается качества: ребёнок играет уже больше месяца и ничего, машина жива-здорова, хотя перезаряжалась уже раз 20.

В некоторых случаях требуется однокомандная система дистанционного управления, достаточно простая, дешевая, с хорошей дальностью. Например, в ракетном моделировании, когда в определенный момент нужно выбросить парашют. Обычно для таких целей используют систему, состоящую из простого сверхрегенеративного приемника и передатчика. Конечно такая схема очень проста по количеству транзисторов, но для получения хорошей чувствительности приемнику-сверхрегенератору нужна кропотливая настройка, налаживание, которая к тому же легко сбивается под действием таких внешних факторов как влияние внешних емкостей, изменения температуры, влажности. И проблема не только в отклонении частоты настройки (это не столь страшно), сколько в том, что изменяется коэффициент обратной связи в сверхрегенераторе, режим транзистора, что в конечном итоге сверхрегенеративный приемник превращает в обычный детекторный приемник или в генератор.

Более стабильных параметров при такой же простоте (по количеству деталей) можно достигнуть если построить приемный тракт по супергетеродинной схеме на интегральной микросхеме. Но специализированные микросхемы для связной аппаратуры не всегда есть в наличии. Зато наверняка у каждого радиолюбителя найдется микросхема К174ХА34 или даже готовый радиовещательный приемный тракт на её основе. Какое-то время назад было простаки повальное увлечение конструированием УКВ-ЧМ радиовещательных приемников на её основе. Сейчас же многие из них отправлены «на дальнюю полку».

Напомню, что микросхема К174ХА34 (аналог TDA7021) представляет собой супергетеродинный радиоприемный тракт УКВ-ЧМ диапазона, работающий с низкой промежуточной частотой (70 кГц). Такая низкая ПЧ позволяет в простейшем варианте ограничиться всего одним контуром, – гетеродинным. Избавиться от LC или пъезокерамических фильтров ПЧ (фильтры сделаны на ОУ по RC-схемам). А в результате получается приемный тракт почти не требующий настройки, – если все правильно спаять работает сразу же, – только контур гетеродина подстроить и готово.

Микросхемы К174ХА34 выпускались в 16-ти и 18-ти выводных корпусах. Что интересно цоколевки у них почти совпадают. Их даже можно воткнуть в одну и ту же плату, подогнув или отрезав лишние выводы, либо оставив две дырки пустыми. Просто нужно мысленно себе представить что у 18-выводного корпуса нет выводов 9 и 10. Если их не брать в расчет то по номерам все как у 16-выводного варианта. У меня была микросхема в 16-выеодном корпусе.

И так, у 16-выводного варианта есть вывод 9 (это же вывод 11 у 18-выводного), так вот этот вывод обычно либо не использовался, либо служил для индикатора точной настройки. Напряжение на нем изменяется в зависимости от величины входного сигнала. Так вот, если это напряжение с него подать на транзисторный ключ с электромагнитным реле на выходе, то при включении передатчика (даже без модуляции) реле будет переключать контакты.

Практически берем типовой приемный тракт на К174ХА34 и задействуем 9-й вывод (рис.1). Теперь остается только настроить приемный тракт на нужную частоту контуром L1-C2. И отрегулировать резистором R2 порог срабатывания реле.
Антенна приемника может быть любой конструкции, – это зависит от места где будет установлен приемный тракт. У меня антенной служит жесткая стальная проволока длиной 30 см.
Схема передатчика показана на рисунке 2. Это однокаскадный генератор ВЧ с антенной на выходе.

Настройку передатчика нужно выполнять с подключенной антенной. В качестве антенны можно использовать проволочный штырь длиной не менее 1 метра. В процессе настройки нужно настроить передатчик на свободную частоту в УКВ-ЧМ диапазоне. Для этого нужен контрольный УКВ-ЧМ приемник с индикатором точной настройки. Передатчик работает без модуляции поэтому факт приема будет виден только по индикатору точной настройки. Впрочем, временно можно сделать модуляцию, подав на базу транзистора VT1 (рис.2.) какой-то аудиосигнал.

Настройка частоты передатчика катушкой L1. Глубину ПОС можно менять изменяя соотношение конденсаторов С2 и СЗ (будет удобнее если заменить их подстроечными). Потом потребуется еще раз точная подгонка частоты.
Режим работы каскада выставляется резистором R1 экспериментально по наилучшей отдаче, но ток потребления при этом не должен быть более 50 мА.

Детали. Катушка гетеродина приемного тракта бескаркасная. Её внутренний диаметр 3 мм. Провод – ПЭВ 0,43, а число витков 12. Изменять индуктивность катушки можно сжимая и растягивая её как пружину.
Катушка передатчика имеет аналогичную конструкцию и так же регулируется её индуктивность. Но внутренний диаметр катушки 5 мм, а число витков 8. Провод тоже более толстый – ПЭВ 0,61.
Вообще, эти катушки можно наматывать практически любым обмоточным или посеребрянным проводом сечением от 0,3 до 1,0 мм.

Электромагнитное реле маломощное с обмоткой на 5V (РЭС-55А, сопротивление обмотки 100 Ом). Можно использовать и другое реле с обмоткой на 5V. Если нужно работать с реле с обмоткой на более высокое напряжение нужно соответственно увеличить напряжение питания схемы, и параллельно конденсатору С14 подключить стабилитрон на 4,5-5,5V.

Всем доброго, три месяца тому назад - сидя «на ответах маил ру» наткнулся на вопрос: http://otvet.mail.ru/question/92397727 , после данного мной ответа автор вопроса начал писать мне в личку, из переписки стало известно что Тов. «Ivan Ruzhitsky», он же «STAWR» строит р/у машинку по возможности без «дорогих» заводских железяк.

Из покупного у него имелись RF модули на 433МГц и «ведро» радиодеталей.

Я не то чтобы «заболел» этой задумкой, но все же стал размышлять о возможности реализации данного проекта с технической стороны.
На тот момент я в теории радиоуправления был уже довольно не плохо подкован (я так думаю), кроме того; некоторые наработки уже были на вооружении.

Ну а для людей которым интересно - Администрация придумала кнопку……

Итак:
Все узлы делались «на коленке» соответственно «красоты» никакой, основная задача выяснить - на сколько данный проект осуществим и во сколько это «вылезит» в рублях и в трудонях.

ПУЛЬТ:
Самодельный передатчик делать не стал по двум причинам:
1. У Ивана он уже есть.
2. Однажды пытался замутить 27МГц – ни чего хорошего из этого не вышло.
Поскольку управление задумывалось пропорциональным, всякие пульты от китайского хлама отпали сами собой.

Схему кодера (шифратор каналов) взял с этого сайта: http://ivan.bmstu.ru/avia_site/r_main/HWR/TX/CODERS/3/index.html
Спасибо огромное авторам, именно из за этого устройства мне пришлось еще научиться «прошивать» МК.
Передатчик и приемник купил тут-же на «Парке» правда на 315МГц, просто выбирал подешевле:
На сайте с кодером есть все необходимое – сама схема, печатная плата «под утюг» и целая куча прошивок с различными расходами.

Корпус пульта спаян из стеклотекстолита, стики взял от вертолетного пульта на ИК управлении, можно было и от комповского геймпада, но жена меня убила бы, она на нем играет в «DmC», Отсек для батареек от тог-же пульта.

Приемник есть, но чтобы тачка ехала нужен еще и декодер (дешифратор каналов), вот его-то искать пришлось очень долго – у меня даже «гугл» вспотел, ну как говорится «ищущий да обрящет» и вот он: http://homepages.paradise.net.nz/bhabbott/decoder.html

Там же и прошивки для МК.

Регулятор: Изначально сделал тот что попроще:

Но ездить только передом не айс и был выбран вот этот:

Ссылка на сайт: http://vrtp.ru/index.php?showtopic=18549&st=600
Там же и прошивки.

Перерыв гору материнок и видео карт нужных транзисторов не нашел, а именно для верхнего плеча (Р-канальные), поэтому Н-мост (это узел который питает мотор) был спаян на базе Тошибовской микросхемы из видеомагнитофона «TA7291P»,

максимальный ток 1,2А – что меня вполне устраивало (не TRAXXAS – же делаю), плату рисовал маркером за 20р, травил хлорным железом, паял со стороны дорожек. Вот что получилось.


В эфир излучается «чистый» РРМ, конечно не есть хорошо, на самолет я такое не поставлю, а для игрушки пойдет и так.
Машинка взята заводская, от братьев китайцев, вся трибуха кроме ходового двигателя удалена и на её место всунут наш с Иваном проект, хоть мы и заняты им порознь, задумка-то его!

Потрачено:
Комплект RF модулей – 200р
Два МК PIC12F675 - по 40р за штуку.
Серва - TG9e 75р
+3 вечера.

Если будут вопросы с радостью отвечу, (о многом не написал)
С уважением Василий.

Юный Техник Для умелых рук 1975 №5 нашем приложении № 3 за 1973 год была опубликована однокомандная аппаратура радиоуправления моделями. С тех пор в редакцию поступило много писем от читателей с просьбой повторить схему.
Редакция попросила руководителя радиокружка Дома пионеров Октябрьского района Москвы Эдуарда Афанасьевича Тарасова подготовить материал о радиоуправлении моделями.
В отличие от предыдущей конструкции данная аппаратура имеет некоторые преимущества:
1. Генератор ВЧ ее передатчика работает непрерывно. Это позволило повысить помехозащищенность аппаратуры.
2. Ее монтаж выполнен без применения фольгированного гетинакса.
3. На выходе приемника вместо довольно дефицитного электромагнитного реле используется мощный транзистор.
4. Контурные катушки выполнены на каркасах широко распространенных контуров телевизора "Рубин".

ПЕРЕДАТЧИК работает на частоте 28.2 МГц, частота модуляции примерно 2 кГц. Его принципиальная схема приведена на рисунке 1. Генератор высокой частоты собран на транзисторе T1, по схеме ёмкостной трёхточки. Его частота определяется контуром R2, С2, С4, С5. Отношение ёмкостей конденсаторов С4 и С5 определяет величину обратной связи. Связь с антенной выполнена по схеме П-контура. Это позволило упростить конструкцию передатчика и облегчить его налаживание. Величина этой связи зависит от соотношения емкости конденсатора С2 и включенных последовательно конденсаторов С4 и С5. Конденсатор С1 установлен для того, чтобы избежать срыва колебаний генератора при замыкании антенны на корпус передатчика.
Модулятор передатчика собран по схеме мультивибратора на транзисторах Т2 и Т3.

Органом управления, позволяющим включать и выключать исполнительный двигатель на модели, служит кнопка Кн1. Использовать для этой цели выключатель питания нельзя! И вот почему. Электродвигатели, установленные на модели, являются источником достаточно сильных радиопомех, особенно если учесть их близкое расположение к приёмнику.
А приемник сделан так, что его чувствительность к помехам снижается во время работы передатчика. Поэтому команды подаются включением или выключением модуляции.
Передатчик расположен в дюралюминиевом корпусе размером 110x45x150 мм.

Все детали передатчика, кроме органов управления, батарей питания и антенны, размещены на монтажной плате, сделанной из гетинакса толщиной 1,5 мм. Размеры платы 90x50 мм. Для монтажа плата расчерчивается штангенциркулем на квадраты со стороной 5 мм. В местах пересечения полученных линий для крепления деталей сверлятся отверстия диаметром 1 мм. Их размещение на монтажной плате и соединения между собой показаны на рисунке 2. Пунктирными линиями здесь обозначены соединения, сделанные с нижней стороны платы. Отверстия диаметром 4 мм, просверленные по углам, служат для крепления платы в корпусе передатчика.


Контурная катушка LI наматывается на пластмассовом каркасе диаметром 9 мм проводом ПЭВ-2 диаметром 0,51 мм. Каркас и сердечник могут быть использованы от контуров телевизора "Рубин".

Дроссель Др1 имеет индуктивность, равную примерно 8 мкГн. Можно использовать дроссель коррекции от телевизора или изготовить его самостоятельно. Для этого на резисторе МЛТ-0,5, сопротивление которого не менее 100 кОм, намотайте 90 витков провода ПЭВ-2 диаметром 0,1-0,12 мм.
Конденсаторы C1-С5 должны быть обязательно керамическими, а С6 и С7 могут быть и бумажными.
Монтажная плата разработана под резисторы МЛТ-0,5. Но могут быть использованы и резисторы МЛТ-0,125, УЛМ, ВС-0,12 и другие.
Транзистор Т1 может быть типа П403, П4І4-П416, ГТ308 с коэффициентом усиления не менее 50. А вот на месте Т2 и Т3 прекрасно работают и низкочастотные транзисторы П13-П16, МП39-МП42, но при этом коэффициент усиления у них тоже должен быть не менее 50.
Питается передатчик от двух соединенных последовательно батарей 3336Л. Если вы захотите уменьшить размеры передатчика, то используйте батареи "Крона".
Антенна передатчика имеет длину примерно 80 см и свинчивается из двух дюралевых прутков диаметром 4 мм с помощью трубочки, имеющей внутреннюю резьбу. Хорошо подходит для передатчика телескопическая антенна от транзисторного приемника.
Размещая монтажную плату в корпусе, следите, чтобы катушка L1 находилась на расстоянии не менее 8 мм от корпуса.
Правильно собранный из исправных деталей передатчик сразу начинает работать. Необходимо только проверить частоту передатчика и, если это необходимо, подстроить его сердечником катушки L1.
ПРИЁМНИК (см. рис. 3). Он собран целиком на транзисторах. Даже на выходе приёмника нет традиционного реле - его место занял мощный транзистор. Это позволило не только исключить достаточно дефицитную деталь, но и повысить надежность работы приёмника.

Его первый каскад собран по схеме сверхрегенератора с самопогашением, а высокочастотная часть этого каскада - по схеме индуктивной трёхточки. Цепочка R3, С5 определяет частоту гашения. В нашем приёмнике она равна примерно 100 кГц. Высокая частота гашения снижает коэффициент усиления каскада, ко зато позволяет отделить полезный сигнал от частоты гашения с помощью достаточно простых фильтров. Режим работы каскада устанавливается потенциометром R2.
Однокаскадный усилитель низкой частоты приёмника собран на транзисторе Т2. Сигнал на вход каскада подается через фильтр R4, Сб. Благодаря включению конденсатора C6 в цепь обратной связи его ёмкость удалось значительно снизить. С выхода УНЧ через резистор R7 сигнал подается на вход второго детектора, собранного на транзисторе Т3. Это позволило повысить входное сопротивление каскада.
Постоянная составляющая продетектированного сигнала, подаваемая на выходной транзистор Т5 через эмиттерный повторитель Т4, управляет работой исполнительного электродвигателя ЭД-1.
Для того чтобы повысить надежность работы схемы, питание приемника и электродвигателя производится от отдельных батарей.
Единственная самодельная деталь приемника - катушка L1. Она наматывается на пластмассовом каркасе диаметром 8 мм и содержит девять витков провода ПЭВ-2 диаметром 0,51 мм. Намотка производится виток к витку, а отвод делается от третьего витка. Отсчет ведется от того конца катушки, который подключен к минусовому проводу питания. Делается это так: сначала наматывают на каркас 3,5 витка и отмечают место, где должен быть сделан отвод. Затем осторожно острым ножом зачищают верхнюю поверхность провода. К зачищенному месту припаивают лужёный проводок диаметром 0,2-0,3 мм. Намотав катушку, проводок подсоединяют к соответствующему выводу. Остальные детали приемника стандартные.
Транзистор Т1 может быть типа П403, П414-П416, а Т2-Т4 - МП20Б. Коэффициент усиления транзисторов должен быть не менее 100. В качестве выходного транзистора Т5 могут быть использованы транзисторы П213-П217 с коэффициентом усиления не менее 25.
Конденсаторы, кроме электролитических, керамические. Ёмкости конденсаторов С1 и С7 могут быть увеличены до 33 нФ, а конденсатора С8, наоборот, снижена до 0,5 мкФ.
Увеличение ёмкости конденсатора С9 приводит к увеличению времени разгона и остановки двигателя.
Все постоянные резисторы типа МЛТ-0,5, но могут быть использованы и МЛТ-0,125, ВС-0,12. Подстроечный резистор R2 типа СП-3.
Конструктивно приемник смонтирован на гетинаксовой плате размером 50x120x1,5 мм. Подготовка платы приемника для монтажа производится так же, как и платы передатчика. Монтажная схема ее приведена на рисунке 4.
Настройка радиоприемника должна проводиться с подключенной антенной. Лучше всего с тон, с которой он будет работать на модели.
К эмиттеру транзистора Т1 через резистор в 20-30 кОм подключают осциллограф. Вращая ручку потенциометра R2, добиваются получения наиболее устойчивой амплитуды частоты гашения. Затем от генератора сигналов подают на вход приемника сигнал частотой 28,2 МГц, модулированный по амплитуде частотой 1000 Гц. Связь между генератором и приёмником должна быть по возможности слабой. Можно, например, расположить провод, идущий от генератора, на расстоянии 1-2 см от антенны приемника. Вращая сердечник L1, добиваются получения максимальной величины полезного сигнала. Он будет просматриваться в виде изменения амплитуды сигнала гашения.
Остальные каскады приемника настройки не требуют. Если для вращения электродвигателя ЭД-1 потребуется увеличить силу тока, замените транзистор Т5. Максимальное значение выходного тока 0,8-1А.
Э. ТАРАСОВ

Что хочется сказать от себя — отличное решение в любой ситуации дистанционного контроля. В первую очередь это касается ситуации когда есть необходимость управлять большим количеством устройств на расстоянии. Даже если и не нужно управлять большим количеством нагрузок на расстоянии — разработку сделать стоит, так как конструкция не сложная! Пара не редких компонентов — это микроконтроллер PIC16F628A и микросхема MRF49XA — трансивер.

В Интернете уже давно томиться и обрастает положительными отзывами замечательная разработка. Она получила название в честь своего создателя (10 командное радиоуправление на mrf49xa от blaze) и находится по адресу —

Ниже приведем статью:

Схема передатчика:

Состоит из управляющего контроллера и трансивера MRF49XA.

Схема приемника:

Схема приемника состоит из тех же элементов, что и передатчик. Практически, отличие приемника от передатчика (не беря во внимание светодиоды и кнопки) состоит только в программной части.

Немного о микросхемах:

MRF49XA — малогабаритный трансивер, имеющий возможность работать в трех частотных диапазонах.
1. Низкочастотный диапазон: 430,24 — 439,75 Mгц (шаг 2,5 кГц).
2. Высокочастотный диапазон А: 860,48 — 879,51 МГц (шаг 5 кГц).
3. Высокочастотный диапазон Б: 900,72 — 929,27 МГц (шаг 7,5 кГц).

Границы диапазонов указаны при условии применения опорного кварца частотой 10 МГц, предусмотренного производителем. С опорными кварцами 11МГц устройства нормально работали на частоте 481 МГц. Детальные исследования на тему максимальной «затяжки» частоты относительно заявленной производителем не проводились. Предположительно она может быть не так широка, как в микросхеме ТХС101, поскольку в даташите MRF49XA упоминается об уменьшенном фазовом шуме, одним из способов достижения которого является сужение диапазона перестройки ГУН.

Устройства имеют следующие технические характеристики:
Передатчик.
Мощность — 10 мВт.

Ток, потребляемый в режиме передачи — 25 мА.
Ток покоя — 25 мкА.
Скорость данных — 1кбит / сек.
Всегда передается целое количество пакетов данных.
Модуляция FSK.
Помехоустойчивое кодирование, передача контрольной суммы.

Приемник.
Чувствительность — 0,7 мкВ.
Напряжение питания — 2,2 — 3,8 В (согласно даташиту на мс, на практике нормально работает до 5 вольт).
Постоянный потребляемый ток — 12 мА.
Скорость данных до 2 кбит/сек. Ограничена программно.
Модуляция FSK.
Помехоустойчивое кодирование, подсчет контрольной суммы при приеме.
Алгоритм работы.
Возможность нажатия в любой комбинации любого количества кнопок передатчика одновременно. Приемник при этом отобразит светодиодами нажатые кнопки в реальном режиме. Говоря проще, пока нажата кнопка (или комбинация кнопок) на передающей части, на приемной части горит, соответствующий светодиод (или комбинация светодиодов).
Кнопка (или комбинация кнопок) отпускается — соответствующие светодиоды сразу же гаснут.
Тест режим.
И приемник и передатчик по факту подачи на них питания входят на 3 сек в тест режим. И приемник и передатчик включаются в режим передачи несущей частоты, запрограммированной в EEPROM, на 1 сек 2 раза с паузой 1 сек (во время паузы передача выключается). Это удобно при программировании устройств. Далее оба устройства готовы к работе.

Программирование контроллеров.
EEPROM контроллера передатчика.


Верхняя строка EEPROM после прошивки и подачи питания на контроллер передатчика будет выглядеть так…

80 1F — (подиапазон 4хх МГц) — Config RG
AC 80 — (точное значение частоты 438 MГц) — Freg Setting RG
98 F0 — (максимальная мощность передатчика, девиация 240 кГц) — Tx Config RG

82 39 — (передатчик включен) — Pow Management RG .

Первая ячейка памяти второй строки (адрес 10 h ) — идентификатор. По умолчанию здесь FF . Идентификатор может быть любой в пределах байта (0 … FF). Это индивидуальный номер (код) пульта. По этому же адресу в памяти контроллера приемника находится его идентификатор. Они обязательно должны совпадать. Это дает возможность создавать разные пары приемник/передатчик.

EEPROM контроллера приемника.
Все настройки EEPROM, упомянутые ниже, запишутся автоматически на свои места по факту подачи на контроллер питания после его прошивки.
В каждой из ячеек данные можно менять на свое усмотрение. Если в любую используемую для данных ячейку (кроме идентификатора) вписать FF, за следующим включением питания эта ячейка немедленно будет переписана данными по умолчанию.

Верхняя строка EEPROM после прошивки и подачи питания на контроллер приемника будет выглядеть так…

80 1F — (подиапазон 4хх МГц) — Config RG

AC 80 — (точное значение частоты 438 MГц) — Freg Setting RG
91 20 — (полоса приемника 400 кГц, чувствительность максимальная) — Rx Config RG
C6 94 — (скорость данных — не быстрее 2 кбит/сек) — Data Rate RG
C4 00 — (АПЧ выключено) — AFG RG
82 D9 — (приемник включен) — Pow Management RG .

Первая ячейка памяти второй строки (адрес 10 h ) — идентификатор приемника.
Для корректного изменения содержимого регистров как приемника так и передатчика воспользуйтесь программой RFICDA , выбрав микросхему TRC102 (это клон MRF49XA).
Примечания.
Обратная сторона плат — сплошная масса (залуженная фольга).
Дальность уверенной работы в условиях прямой видимости — 200 м.
Количество витков катушек приемника и передатчика — 6 . Если воспользоваться опорным кварцем 11 МГц вместо 10 МГц, частота «уйдет» выше около 40 МГц. Максимальная мощность и чувствительность в этом случае будут при 5 витках контуров приемника и передатчика.

Моя реализация

На момент реализации устройства под рукой оказался замечательный фотоаппарат, поэтому процесс изготовления платы и монтажа деталей на плату оказался как ни когда увлекательным. И вот к чему это привело:

Первым дело нужно изготовить печатную плату. Для этого я постарался как можно подробней остановиться на процессе ее изготовления

Вырезаем нужный размер платы Видим что есть окислы — нужно от них избавиться Толщина попалась 1.5 мм

Следующий этап — очистка поверхности, для этого стоит подобрать необходимый инвентарь, а именно:

1. Ацетон;

2. Наждачная бумага (нулёвка);

3. Ластик (стерка)

4. Средства для очистки канифоли, флюса, окислов.

Ацетон и средства для смывки и очистки контактов от окислов и подопытная плата

Процесс очистки происходит как показано на фото:

Наждачной бумагой зачищаем поверхность стеклотекстолита. Так как он двухсторонний, проделываем все с обеих сторон.

Берем ацетон и обезжириваем поверхность+смываем остатки крошки наждачной бумаги.

И вуалая — чистая плата, можно наносить лазерно-утюжным методом печатку. Но для этого нужна печатка 🙂

Вырезаем из общего колличества Обрезаем лишнее

Берем вырезанные печатки приемника и передатчика и прикладываем их к стеклотекстолиту следующим образом:

Вид печатки на стеклотекстолите

Переворачиваем

Берем утюг и все это дело прогреваем равномерно, до появления отпечатка дорожек на обратной стороне. ВАЖНО НЕ ПЕРЕГРЕТЬ! Иначе поплывет тонер! Держим 30-40 сек. Равномерно поглаживаем сложные и плохо прогретые места печатки. Результатом хорошего перевода тонера на стеклотекстолит служит появление отпечатка дорожек.

Гладкое и увесистое основание улюга Прикладываем к печатке разогретый утюг
Прижимаем печатку и переводим.

Вот так выглядит готовая отпечатанная печатка на второй стороне журнальной глянцевой бумаги. Должно быть видно дорожки примерно как на фото:



Аналогичный процесс проделываем со второй печаткой, которая в вашем случае может быть либо приемником, либо передатчиком. Я разместил все на одном куске стеклотекстолита



Все должно остыть. Затем аккуратно пальцем под струей воды удаляем бумагу. Скатываем ее пальцами слегка теплой водой.

Под слегка теплой водой Пальцами скатываем бумагу Результат очистки

Не всю бумагу получается удалить таким образом. Когда плата высыхает остается белый «налет» который при травлении может создать кое-какие непротравлеенные участки между дорожками. Расстояние-то маленькое.



Поэтому мы берем тонкий пинцет или цыганскую иглу и удаляем лишнее. На фото замечательно видно!



Помимо остатков бумаги, на фото видно, как в результате перегрева в некоторых местах слиплись контактные площадки для микросхемы. Их нужно аккуратно, той же иглой, как можно внимательней разъединить (соскрести часть тонера) между контактными площадками.

Когда все готово переходим к следующему этапу — травление.

Так как у нас стеклотекстолит двухсторонний и обратная сторона сплошная масса нам нужно сохранить там медную фольгу. Для этой цели заклеим ее скотчем.

Скотч и защищенная плата Вторая сторона защищена от травления слоем скотча Изолента как «ручка» для удобвства травления платы

Теперь травим плату. Я делаю это старым дедовским методом. Развожу 1 часть хлорного железа к 3 частям воды. Весь раствор в банке. Хранить и использовать удобно. Разогреваю в микроволновой печи.


Каждая плата травилась отдельно. Теперь берем в руки уже знакомую нам «нулевку» и зачищаем тонер на плате

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то